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Abstract 

Kinematic single-crystal X-ray diffraction of totally 
polarized radiation is investigated for the presence 
of AAS (anisotropy of anomalous scattering). The 
developed model allows a clear distinction between 
geometric and structural aspects of the scattering. The 
former incorporates essentially an extension of the 
conventional polarization correction, the latter leads 
to a generalized structure factor. Both aspects are 
combined in the description of a structure-factor 
tensor that is defined in the diffractometer system and 
consists of a complex linear combination of six real 
basic tensors uniquely defining the dependence of a 
reflection intensity on both the scattering angle 2 0  
and the azimuthal setting q" of the crystal. The com- 
plex coefficients of that structure-factor expansion 

are determined by the crystal structure, including the 
anisotropy of at least one atomic scattering factor. 
Under the limiting conditions of purely G-polarized 
radiation and one 'edge atom" per asymmetric unit, 
effects of AAS on the systematically extinct ('forbid- 
den') axial reflections in all monoclinic and ortho- 
rhombic space groups are studied. The compilation 
of the results offers both a concise survey over 23 
unique cases of relevant symmetry and a practical 
guide to designing diffraction experiments. One pos- 
sible application of FRED (forbidden reflection near- 
edge diffraction) is partial-structure determination, 
i.e. the location of an anisotropically resonant scatter- 
ing 'edge atom' from the intensity variations l(h,  1/'). 
The method requires only AAS and a few reflections 
whose intensities are measured at selected azimuthal 
settings. 

0108-7673/93/010035-11506.00 © 1993 International Union of Crystallography 
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1. Introduction 

The availability of synchrotron sources permitting 
single-crystal X-ray diffraction studies with radiation 
of variable energy has prompted interest in 
anisotropic anomalous scattering (AAS) of atoms 
bonded in a crystal. AAS is a resonance effect that 
can occur in the vicinity of an absorption edge, 
i.e. in the XANES and EXAFS regions. It can be 
modelled by an atomic scattering factor including 
energy-dependent anisotropic anomalous-dispersion 
correction terms that are represented by symmetric 
second-rank tensors, f', f", that are compatible with 
the atom's site symmetry. 

Based on earlier studies by Templeton & Templeton 
(1980, 1982, 1985, 1988) and Dmitrienko (1983, 1984), 
a general formalism describing kinematic scattering 
from a single crystal in the presence of AAS and 
experimental evidence for the validity of the model 
have been given in previous contributions [Kirfel & 
Petcov (1992); Kirfel, Petcov & Eichhorn (1991); 
hereafter referred to as KPb and KPE, respectively]. 
A similar study of the problem was reported by Fan- 
chon & Hendrickson (1990). 

In general, AAS affects all reflections. Thus, it may 
be considered an unwanted effect in near-edge data 
collection to be circumvented by careful choice of 
the wavelength. On the other hand, AAS possesses 
exciting and potentially useful features. One of them 
is the violation of systematic extinction rules due to 
screw axes and /o r  glide planes in a structure, referred 
to as FRED (forbidden-reflection near-edge diffrac- 
tion, see KPE). The factors determining the intensities 
of such ' forbidden'  reflections can be summarized in 
two groups: 

(i) the scattering angle 2<9; 
(ii) the ~ setting of the crystal, i.e. rotation around 

the scattering vector h; 
(iii) the energy and the polarization of the incident 

radiation; 
and 

(iv) the resonant scattering of the 'edge atom(s) ' ,  
i . e . f ' ( E ) , f " ( E ) ;  

(v) the partial structure of the 'edge atom(s) ' ;  
(vi) the occupation of the atomic site under con- 

sideration. 
The factors of the first group can be varied by the 

experimentalist, the second group comprises solely 
sample properties. 

The selectivity of scattering (v) from the 'edge 
atoms' alone renders the signal independent of the 
size and complexity of the nonresonant scattering 
'rest structure'. If one confines the partial structure 
to one unique 'edge atom' per asymmetric unit, par- 
tial-structure information can be extracted from the 
intensity variations l (h,  xp') of ' forbidden' reflections 
as first shown by Templeton & Templeton (1986) for 
NaBrO3, with space group P2~3. A second proof has 

been given by Kirfel & Petcov (1992, KPb), applying 
an earlier proposed method [Kirfel & Petcov (1991), 
hereafter referred to as KPa]  to a crystal of LiHSeO3 
with space group P2~2t2~. 

In the present contribution, our considerations 
about partial-structure information are extended to 
all monoclinic and orthorhombic space groups per- 
mitting FRED. Common to these is the presence of 
21 screw axes and /o r  glide planes of type a, b, c, n 
or d. 

In § 2, the general scattering algorithm (KPE) 
incorporating AAS is re-evaluated from a somewhat 
different viewpoint. The structure-factor tensor 
F(h)r~, defined with respect to the diffractometer sys- 
tem, is expanded into a linear combination of a set 
of basic tensors, which determine exclusively the 
geometric part (i, ii) of the scattering. The complex 
coefficients of this expansion depend only on items 
(iv)-(vi), where (v) incorporates the space-group 
symmetry. Thus, § 2 of this paper is as general as 
possible and applies to any crystal symmetry. 

Using this approach, §§ 3 and 4 deal with the 
intensities of ' forbidden'  reflections and with the par- 
tial-structure information that can be obtained from 
them under the following conditions. 

(i) The incident radiation is purely tr polarized. 
This condition is approximated by using synchrotron 
radiation and scattering in the vertical plane. 
(Extension to more general polarization properties is 
possible, but not helpful for the aim of this study.) 

(ii) There is only one atom of an 'edge element' 
in the asymmetric unit. 

(iii) Only the 'forbidden'  axial reflections are con- 
sidered in monoclinic and orthorhombic space 
groups. 

(iv) Anisotropy of absorption is neglected. 
The complex coefficients of the structure-factor 

tensor expansion are first evaluated and summarized 
for all relevant space groups belonging to a given 
point group. Then, 'polarized structure factors' (PSF), 
i.e. complex numbers, determining the or- and n-- 
polarized contributions to the scattered radiation are 
developed. This leads to a survey of the properties 
of FRED. Finally, the results are discussed in terms 
of partial-structure information, showing that all 
space groups can be covered by only a few different 
cases and that 'edge-atom' positions can be assessed 
provided AAS occurs to a significant degree. (This is 
the only prerequisite; no further knowledge about the 
resonance effect is required.) 

Thus, the aim of §§ 3 and 4 of this contribution is 
to give not only a systematic survey over the relations 
between space-group symmetry and FRED but also 
a practical guide for the design of a diffraction experi- 
ment in order to yield partial-structure information. 
Since all results are presented for an atom in a general 
position, predictions of special effects due to positions 
with higher point symmetry can be easily derived. 
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2. The general Bragg-seattering formalism 
2.1. The structure-factor tensor in the diffractorneter 
system 

The introduction of symmetric complex scattering- 
factor tensors f for anisotropically resonant scattering 
atoms leads to the formulation of a structure factor 

V(h) = ~ ~ otf,pT, pGtp, (1) 
I=1 p = i  

where n is the number of atoms in the asymmetric 
unit; m is the number of symmetry operations of the 
space group; ot is the occuj3ation factor for site l 
(multiplicity); T~, = exp [ - h '  B~t,h], the temperature- 
factor expression; G~p = exp [ 2 m h .  r~p], the geomet- 
ric factor, ftp is the scattering-factor tensor of the lth 
atom transformed by the rotational part of the pth 
symmetry operation of the space group according to 

f0, = Rpft,R~. (2) 

ft~ is, of course, energy dependent and the real and 
imaginary parts generally exhibit different depen- 
dencies. 

Each f~t, can be expanded into a linear combination 
of symmetric tensors Qo, 

3 

f lP  = ~ fJ, o,Q!/, ( 3 )  
i , j=  1 

i-...j 

where the complex coefficients fj.tp incorporate the 
transformations Rp. The Q0 are given by 

QI, = 0 , Q22= 1 
o o 

Q33 = 0 , QI2 = 0 

0 0 

Q13 = 0 , Q23 = 0 
0 1 

Then, the structure factor becomes (for radiation of 
constant energy) 

3 

F(h)-- 2 AoQ0, 
i , j =  1 
i ":.j 

A 0 : ~ ~ o,fj.tpTIpG,v. 
I p 

i) 
i ) ,  (4) 

i) 

(5) 

To obtain F(h) with respect to the diffractometer 
system D (Fig. 1) as convenient for the description 
of the scattering (KPE), F(h) of (5) must first be 
transformed into a Cartesian system C fixed with 

respect to the crystal. If one chooses Xc Ilao*, Yc in 
the plane of a* and b(*, Zc along Co, this is accom- 
plished by transformation with an upper triangular 
matrix 

i cos-r* cos/3* \ 
Bo = sin 3/* - s in /3*  cos a ) ,  (6) 

0 Vo*/sin y* 

V~ = ( 1 - cos2a * - cos2/3 * - COS2T * 

+ 2 cos a* cos/3* cos y.)l/2. 

Bo describes the unit vectors of the reciprocal lattice 
with respect to system C; Bo = I for orthogonal axes. 
The definition of C is the keeping with the literature 
(Busing & Levy, 1967; Willis & Pryor, 1975), 

F(h)c = (Bo') rF(h)(Bo') .  (7) 

Then, the crystal must be rotated into the diffraction 
position, so that F(h)~ defined with respect to the 
diffractometer system is given by 

F(h) t~ = (XoOo)F(h) c (XoOo) T . (8) 

Xo and ~o are rotation matrices of the type 

(Co  0 sin;) 
Xo = 1 0 , 

\ - s i n ~  0 cos 

f c o s q ~ - s i n e  i )  (9) 

*o=Is i ; ,¢  cos~0 " 

Similar to (5), the resulting structure-factor tensor (8) 
can then be expressed as a linear combination, 

3 

F(h) , )=  Z A0(XoOo)(U(~')rQ0(Bo')(Xoq%) r 
i , j - - I  

i " . j  

3 

= Z F,~.Q'u~,. (10) 
U , L '  - 1 

u-. .u 

In this notation, the complex coefficients F,v (u, v = 
x, y, z) are determined by the A 0 of (5) and by the 
elements of Bo, Xo and ~o. Apart from the indices 1, 
2, 3 being replaced by x, y, z, the Q',~, take the same 
form as in (4), however, they are now defined in the 
Cartesian system D. The index surfaces of the Q',~., 
i.e. erQ',~,e (e is a unit vector) are recognized as 
surface spherical harmonics. The first three types 
correspond to squared dipoles p~,p~,,p2 oriented 
along the directions [ 100], ,  [010]o, [001 ]r~ of system 
D, the latter three to quadrupoles dxv, dx~, d,.. with 
their positive lobes oriented along [110]o, [ 101]v and 
[011]~, respectively. Hence one can consider the 
index surface of any structure-factor tensor F(h)v as 
a complex linear combination of six basic multipoles. 
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A rotation of the crystal around the scattering 
vector h (Hxo) is described by 

(i 0 0) alr = cos ~ sin . ( 11 ) 

- s in  gt cos 

(The setting of the crystal after rotation into the 
diffracting position is defined as ~ = 0.) alr transforms 
the structure-factor tensor F(h)D and the basic tensors 
according to 

F(h, ~ ) n  = ~F(h)oXP r, 
(12) Q.~,(qt) , T ' = altQ~ xp ( u , v = x , y , z )  

and the g; dependence of the index surface of 
F(h, ~)~) must be contained in the multipoles as 
viewed along [100]o. 

2.2. The scattering contributions and basis functions 

The next stage of the analysis depends on equations 
(1)-(8) of KPE. A totally polarized electromagnetic 
plane wave is represented by an electric-field vector 

where the Eo .... are generally complex numbers and 
tr and rr denote the components perpendicular and 
parallel to the scattering plane (Fig. 1). The total 
intensity of the radiation scattered is then given by 

l(h, ~ ) =  (E*l~+(h, ~ ' )~(h ,  ~)[E). (13) 

The superscripts + and * denote the Hermitian and 
complex conjugates, respectively, and ~(h ,  ~P) is a 
scattering matrix 

( O,~,,~(h, ~ )  clg,r~(h, 
if(h, ~F)= O=,,,(h, ~ )  O=,=(h, ~ )  (14) 

X D 

i i 

h 
i i 
i . . u  . . L  i 

YD~ 

Z 2 ~  e-~°' 
Fig. 1. Scattering geometry for the diffractometer system D in the 

reflection position. The vertical scattering plane contains e,~ 
and e,~.. 

with 

O~(h ,  g ' ) = e ~ F ( h ,  W)De~ 
( , , ) ~ = o ' , ~  and u = ( r , ~ .  

( 1 5 )  

e,, = e,r,, e= and e=, are the unit vectors of the polariz- 
ation directions defined in system D (Fig. 1). 
O,,,=(h, ~ )  describes the tr-polarized scattered radi- 
ation stemming from the ~- component of the primary 
radiation etc. The O, , (h,  ~ ) ,  being complex numbers, 
can be considered as 'structure factors including 
polarization effects', PSF, and are thus dependent on 
the type of scattering. 

With reference to (10) and (12), each O. . (h ,  ~ )  
can also be written as a linear combination, the Q',.~ 
of (10) being, however, replaced by 

%v(nu, qt) T , -- e,TQuv(~V)e,. (16) 

The resulting real functions quL,(~', ~ )  depend only 
on the azimuth, ~v, and the scattering angle, 20.  They 
provide a set of simple trigonometric expressions each 
being characteristic for a particular combination 
of a Q',,v with a type of scattering r/u. Thus, the 
q~v(Ov, g') describe completely the geometric aspect 
of the scattering and any resulting intensity l(h,  ~ )  
is necessarily a function of them. It is therefore jus- 
tified to consider the scattering in terms of scattering 
from the 'multipoles' ,  i.e. to evaluate the basis func- 
tions q,,v(~u, ~g). The coefficients F~, of(10) are then 
the weights applied to these functions. For a given 
reflection h, azimuth kV and constant energy, these 
weights are solely determined by the physical aspect 
of the scattering, i.e. the space group, the positions, 
the occupation and the anisotropic scattering factors 
of the 'edge atoms'. 

2.3. The general geometric' scattering terms 

(co  
e,,=e,~,= , e ~ =  si 0 , 

(17) = ( cos 0 
-si ° o) 

and with the abbreviations 

C~, =cos  g;, S~, =s in  tp, C2~, =cos2g ; ,  
(18) 

$2~, =sin2~V, C~.~ =cos  O, &~=sin  O, 

one obtains the functions q,,~(~v, tp), summarized in 
Table 1. Since the q,,~(o"o-, ~ )  are the values of their 
respective tensors Q',~, in the direction of e,r = 
[001]D,O,~,,~(h, 1/') probes the index surface of 
F(h, ~)D.  Thus, cI),r,~(h, q") is the value that the 
structure-factor tensor takes along the same direction 
as the crystal rotates around hll[100],. This function 

From Fig. 1, 
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Table 1. qt and 0 dependencies o f  the basis functions 
q,,~(71u ' gt) 

tTrOr -/Tt,W ,ti-FO - or', W 

q,x 0 C 2 0 0 

q,., S~ -SoCk.2 2 ~SoS2 ~, - ~SoS2 ~, 
qz: C ~  2 2 -SOS. -~SoS2. ~SoS2~. 
q,~ 0 0 - CoSq, - CoS~,, 
q,~ 0 0 CoC~, CoC~, 

q,.: -S2q, -$2oS2,1, -So ( ' 2  q, SoC2~., 

is, of course, independent of the scattering angle. 
As expected, all other PSFs involving electric-field 
components in the scattering plane do depend on O. 
Table 1 shows in addition that the gt dependence of 
l(h,  ~ )  - regardless of crystal system and space group 
- must be periodic in 2It~n, where n = 1, 2, 4. 

3. Intensities of 'forbidden' axial reflections in mono- 
clinic and orthorhombic space groups 

Under the limitations outlined in the Introduction and 
neglecting the temperature factor [see (1)] the struc- 
ture-factor tensor in the presence of AAS is 

F(h) = ~ ofp exp [27rih. tp] exp [2rrihRpr], (19) 
p = l  

where the symmetry-equivalent atom positions are 
given by 

r v = tp + Rpr. (20) 

The elements tit, of the translation vector t v are either 
0 or ½ and the rotation matrices Rp possess only the 
diagonal elements R,,p = +1 (i = 1, 2, 3). For the two 
space groups Fdd2 and Fddd, tiv can also take the 

3 values -~ and ~ and the ' forbidden'  axial reflections 
are even. Then, for any ' forbidden'  axial reflection, 
2h • tp is either zero or an odd number, yielding 

exp[27rih. tv]=(--1)2h'%=sp.  (21) 

The last factor of (19) is explicitly 

exp [2~rihRpr] = cos [2~r(hR~ ~.pX + kR22.py + lR33.pZ ) ] 

+ i sin [27r(hRll,px+ kR22,pY 

+ lR33,pZ)]. (22) 

The scattering-factor tensor of symmetry-equivalent 
'edge atoms',  as given by (2), is 

f l l  Rll .pR22.pf12 

f p =  Rll,pR22,pf12 f22  

Rll,pR33.pf13 R22.pR33,pf23 

R,,.vR33.pf!3~ 
R22.pR33.pf23|. 

f .  / 
(23) 

With use of the fact that, for all p, 

cos [27rhR.,pX] = cos [2rrhx] 

sin [27rhR..pX] = R..p sin [27rhx] 
(24) 

and with the abbreviations 

Chx = COS [21rhx] and Shx = sin [27rhx] 

etc. for Cky, Sky, Ctz and Stz, one can rewrite the 
structure-factor expression as 

F(h) = ~ OSp fv{[ ChxCky CIz -- R22.pRaa.pChxSky SIz 
p = l  

- R l l , p R 2 2 , p S h x S k y f l z  -- R tl.pR33,pShxfkySIz ] 

+ i[ R, ~,pShxCkyGz + R22.pChxSkyGz 

+ R33.pChxCkyS,~-det (Rp)ShxSkyStz]} 

= E os,,f,,X(b),, 
p = l  

3 m 

= E E ospX(h)pR,,,pRjj,pfoQo. (25) 
i=1 p = l  
i<j 

In this equation, there are only matrices Q0 with i <j .  
The contributions Q0 with i = j  vanish, because the 
extinction rules apply to the diagonal elements of 
(23). For the ' forbidden'  axial reflections, the X(h)p 
reduce to 

X ( hOO)v = Ca:, + iRll,pShx, 

X(OkO)p = Cky + iR22,pSky, (26) 

X (OOl)v = Clz + iR33.pSl:. 

Calculating (25) explicitly, one obtains sums over 
integer combinations that are abbreviated as 

m 

~. spRi,.p = Zi ,  
p = l  

spR..pRjj.p = E0. (27) 
p = l  

Sp det (Rp)= ~,23, 
p = l  

where sp depends, of course, on h. Incorporating the 
space-group symmetry, these ~ sums enter the 
coefficients A o of (5). The F tensors of the 'forbidden" 
axial reflections can be recast in the abbreviated 
notation 

F(0k0) / = oD f , 3Q ,3J ,  (28) 

F(00I) / f23Q23/ 

where 

{ Dht2 Dhl3 Dh23~ 
D = l O k l 2  Okl3 Dk23] 

\ D~12 Oil3 DI23/ 

\CI=EI2+iSIzEI23 CIzEI3+iSIzEI cIzE23+istz).2 / 

(29) 
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For the monoclinic and orthorhombic space groups, 
the transformation matrix Bo is 

Bo = 1 , 

0 

(3o) 

where c = cos/3", s = sin/3*. 
With reference to the scattering geometry of Fig. 1 

and with the assumption that the crystal is mounted 
with ao*llxo and bo*llY,~, the systems C and D 
coincide for h00 reflections (~0 = 0, ~: = 0). For 0k0 
and 001 reflections, rotations (~0 = - 9 0  °, ~c=0) and 
(~o = 0, ¢ =/3"),  respectively, give the diffracting posi- 
tions. Thus, for monoclinic crystals, Xo(/3*) and 
Bo(/3*) lead to a somewhat more complicated 
description. 

In accordance with the recipe outlined in § 2.1, the 
matrix multiplications involving @o, Xo and Bo have 
to be carried out on each of the elements of D, leading 
to 

{Q-"/ 
F(OkO)oJ=o/sD,lQx=l, (31) 

where 

SDhl2fl2 Dhl3fl3 
D I = I--SDkl2fl2 Dk23f23 -- ¢Dkl2fl2 

k sD123f23 -Dll3fl3 

Dh23f23 -- cDh 12fl2 

- Dkl3f t3  

c D / 2 3 f 2 3 -  Dl l2f l2  

--2c/sDhl3fl3~ 
--2c/SDkl3ft31 • 
-2c/SDll3fl3/ 

(32) 

In the next step, the complex values of the scattering 
contributions ~,~(h, ~ )  are calculated according to 
(15) and (16), 

• ,~(OkO, ~)  = o/sD,[qx~(nv, ~)  
q),~(OOl, gt) ~q~z(rlv, ~ )  " (33) 

Explicit expressions for the PSFs of ' forbidden'  axial 
reflections are given in the Appendix [ (A1)-(A6)] .  
These equations apply to any appropriate monoclinic 
or orthorhombic space group. The total ~-dependent  
intensity follows then from 

l(h,  ~ ) = ( g h / s i n 2 0 ) [ l ~ , ~ , , ~ ( h ,  g/)12 

+ l ~ ,  (h, ~)12]. (34) 

Kh is a scale factor, 1/sin 2 0  is the Lorentz correction, 
absorption correction is neglected and the polariz- 
ation correction is contained in the qb elements. 

3.1. The ~ sums 

With respect to partial-structure information con- 
tained in FRED, only centric projections are useful. 
Acentric projections occur in space groups in which 
the origin is arbitrary on the projection axis. (In other 
words, partial-structure information cannot be 
obtained where it is unnecessary.) Nevertheless, such 
a case does not preclude the existence of FRED, but 
the intensity must not depend on the edge atom's 
position. This may be verified considering 
• ~,,,,(h00, ~ )  and ~,,T(hO0, ~ )  given in the Appen- 
dix. For an acentric projection onto [ 100], all R~ ~.p = 1 
so that 

~23=)-'.23, ~2 = ~ 2  and ~ 3 = ~ 3 .  (35) 

Consequently, both PSFs can be factorized with 
respect to [ Ch~, + iSh~], which disappears upon calcu- 
lating ]~,,,o,(h00, ~)[2 and I~ , , , (h00 ,  ~) l  2. 

For the centric projections of structures (with or 
without an inversion centre), the properties of q b ,  
and q~,~,,, depend on the total space-group symmetry. 
If there is an inversion centre, it is obvious that 

~123 = ~ S v det (Rp)=0  (36) 
p--I 

since det (Rp) changes sign for the inverse operations 
while s v does not. The same argument holds for the 
sums involving only one R, element, i.e. ~,1 =~2  = 
Y~3 =0. 

Thus, for centric space groups, only sums Y!, are 
significant and q~,,,,, and ~, ,~ simplify as expected 
by omission of the imaginary part of the geometric 
term of the 'edge atom'. Still in agreement with the 
conventional scattering model, the PSFs are complex 
quantities in the case of AAS. 

For the ' forbidden'  axial reflections, there are 
always m / 2  Sp terms of either sign. Additionally, R,.p, 
R.,p x Rib p and det (Rp) are also either all positive or 
pairwise positive and negative. Combining these 
possibilities shows that the ~ sums must be equal to 
0 or m. Thus, dividing the Y sums by the number of 
symmetry operations m in the space group, yields 
~ = 0  or 1. Therefore, (A1)-(A6) are m-multiples of 
PSFs describing the scattering per asymmetric unit. 

3.2. Systematic representation 

According to (27), Table 2 gives a complete rep- 
resentation of the 45 monoclinic and orthorhombic 
space groups allowing for FRED of axial reflections. 
This compilation is based on International Tables for 
Crystallography (1983). For the monoclinic system, 
only the standard second setting is considered. 

The space groups are indexed by their numbers. 
Within each point-group box the space groups are 
classified according to a 'reduced symmetry'  (RS), 
i.e. a unique combination of relevant symmetry ele- 
ments that must be contained in the full symmetry to 
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Table 2. Forbidden r e f l e c t i o n s  in  p o i n t  g r o u p s  2 ,  2 /  m ,  2 2 2 ,  m m 2  a n d  m m m  

a',  b' a n d  c '  d e n o t e  g l ide  p l a n e s  wi th  t r a n s l a t i o n s  ao/4,  b , / 4  a n d  Co/4, r e s p e c t i v e l y .  + i n d i c a t e s  a n o n v a n i s h i n g  sum.  D , ,  a re  e l e m e n t s  
o f  (29),  w h e r e  r = h, k o r  I. F o r  o t h e r  d e t a i l s  see  text .  

Po in t  R e d u c e d  S p a c e - g r o u p  
g r o u p  s y m m e t r y  no.  h k ! Y.t ~2 Y~3 212 ~'~13 ff.~23 .~..~123 D~t2 

2 .2~* (4) 0 k 0 + + + + ('k, + iS~, 
m *c* (7,9) 0 0 1 + + + + Ct: + iSt: 

2 /m *2t* (11,14) 0 k 0 + + ("~, 
*c* (13, 14, 15) 0 0 I + + ( ' l:  

222 2t212t (19) h 0 0 + + iSh, 
2121. (18) + + Ch, 

(18, 19) 0 k 0 + + Ck, 
*'21 (17,19,20) 0 0 I + + 

mm2 *a21 (31) h 0 0 + ± iS~,, 
*a* (28, 29, 32, 33, 34, 40, 41 ) 1- + C~,, 
*a'* (43) 
b** (3(I, 32, 33, 34) 0 k 0 + + (.'~, 
b'** (43) 
c-2~ (29, 33) 0 0 I + + 
*c2t (26, 31, 36) + + 
cc* (27, 30, 34, 37) + + ('l: + iStz 

c'c'* (43) 
mmm 2ta* (55,58) h 0 0 + ('h, 

21*a (51, 54, 56, 59, 60, 61,62) + 
*aa (48, 50, 52, 53) + 

*a'a' (70) 
b2~* (52, 5,57,58,61,621 0 k 0 + Ck, 
.21b (56, 59) + 
b*b (48, 50, 60) + 

b'*b' (70) 
c*2t (62) 0 0 I + 
*c21 (53, 57, 60, 61,63, 64) + 
co* (48, 49, 52, 54, 56, 58, 66, 68) + Cl: 

c'c'* (70) 

Dr 13 D,2 3 

Ck, + iS~, 
( ] :  + iSl: 

Ct: 
Ch~ 
i Sh ,  

iSk, 
iSl: ( ' l:  

(-~h ", 
iSh, 

iS~, 

Ct: + iSt:- 
('tz + iSt: 

C h .,~ 

C k  y 

Ciz 

Ch 

Ck 

Ct= 

yield identical combinations of Y~ sums and hence 
identical PSFs, cI9,, and @,~,,,. These symmetry ele- 
ments are either one or two glide planes parallel to 
h possessing a glide component along h and/or  the 
2~ axes. An asterisk indicates a 'wild card', i.e. the 
symmetry element(s) associated with the correspond- 
ing direction is (are) irrelevant. 

For the 6 point groups and the 3 types of axial 
reflections, one finds 23 different cases to be con- 
sidered in the investigation of l(h, ~) .  Only 18 of 
them can yield partial-structure information due to a 
fixed origin with respect to the considered crystal axis. 

For each space group, the entries of the ~ sums 
are all either blank or +, indicating Y~ = 0 or ~ = m, 
respectively. Thus, for any monoclinic or orthorhom- 
bic space group, Table 2 shows whether or not FRED 
can occur and, if so, which ~ sums (--m) have to be 
considered in the calculations of qt,,~,,~(h, qz) and 
q~,~,,,(h, ~ ) .  Table 2 confirms that the centric space 
groups exhibit only one (orthorhombic) or two 
(monoclinic) ~ii contribution(s), while all acentric 
space groups are associated with mixed ~ types, as 
already stated in deriving (36). 

Table 3 summarizes the 23 RS cases (column 2) 
distributed over the point groups (column 1). Column 
3 contains the numbers of the space groups belonging 
to each case and column 4 contains the reflection 
type considered. The last two columns give explicit 
expressions for ]~,~,,~(h,~)l 2 and Iq,=,~(h, qZ)12, 
multiplied by the factor s 4 / ( o m )  2. Column 5 numbers 

the cases [ 1 , . . . ,  23] mentioned above. Thus, Table 
3 provides the basis for a systematic inspection of 
axial FRED in monoclinic and orthorhombic systems, 
in particular with respect to the 18 distinguishable 
cases where partial-structure information is contained 
in the 'forbidden' reflections. In agreement with Table 
2, these are the RS cases for which the geometric 
terms Ch.r and/or  S~.r appear in Table 3, indicating 
a centre of inversion for the projected structure. 

3.3. Examples 

The use of Table 3 may be illustrated by two 
examples. 

(1) Point group ram2, "reduced symmetry" *a*, 
reflections hO0. From Table 2, all ~ vanish except 
~ 2 = ~ 2 3  = m. Then, using [10] of Table 3, 

I q,,,,,,(h00, qz)12 

( 0 m ) 2 s - 4  ~ ~ , -- S ~ x l f ~ 3 1 - s ~ , ,  

I q~,~,,~(h00, 1/')1 -~ 

= ( o m ) 2 s - " l C h x f , 2 C o S ~ ,  + iSh,,f~3S,. ,C2,el 2 

These results are valid for the space groups Pma2 
(No. 28), Pca2~ (No. 29), Pba2 (No. 32), Aba2 (No. 
41), Pna2~ (No. 33), Ama2 (No. 40) and Pnn2 (No. 
34), for the last one because the n-glide plane perpen- 
dicular to [010] contains an a-glide component. 

(2) Point group mmm 'reduced symmetry' *2~b, 
reflections OkO. From Table 2, all ~ vanish except 
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Table 3. "Polarized structure factors' for the 23 "reduced symmetry' cases up to orthorhombic symmetry 

Point 
group 

2 
m 

2/m 

222 

Reduced  Space-group  
symmet ry  no. h k ! N u m b e r  s4(om)-2lcJs,~,~(h , t/t)[2 s 4 ( o m ) - 2 1 ~ , ~ ( h  , tlv)12 

"21" (4) 0 k 0 [1] ]J12(sSq/-c('qv)+f23Cqt]2s2C20 
*c* (7,9) 0 0 t [2] If,2 -cf231~ s2 S=.2 I f , 2 s o c 2 . _ f 2 d s c . s . + c s . c . ~ . ) 1 2 s 2 _  
.2,* (!1,14) 0 k 0 [3] C~,*[I] 
*c* (13, 14,15) 0 0 I [4] C~:*[2] C~:*[2] 

2,2,2, (19) h 0 0 [5] IC, . . . f~C' . - iS , . f t2S . l "C2o 
2121" (18) [6] IC, , .A2S.  - iS,,,A~C'.[2 C~  

(18,19) 0 k 0 [7] ICk~ f t2S.  + "tSj.,f2:~('q/~2 C¢..:12 
**2, (17,19,20) 0 0 I [83 IC,-);~S,+_. ,S,:f,~C,I C ~ 
*a21 (31) h 0 0 [9] ("2h~lf2312 S g q . 2  [(.f2~S~C.,u+iS~,.fl.(.e~S,e[.._ _ 
*a* (28,29,32,33,34,40,41) [10] S~,~lf2312S~g, IC'nJ~zC¢.,Sw +iS~,~f23Se~C2q. I 2 
*a'* (43) 
b** (30,32,33,34) 0 k 0 [11] Sk, [f~3[2 2S2 k , t , 2  [Cl,,.[12(.e~Sq.+iSk,j~aSoC. q , [ 2 .  . 
b'** (43) 
c.2~ (29,33) 0 0 l [121 1.[,312('~,C~ 
*c2, (26, 31,36) [13] I/?,l"C;,s~, 
co* (27,30,34.37) [141 ]J,2[" 2 ~- .22. [fl212SLC2w 

c'c'* (43) 
2,a* (55,58) h 0 0 [151 C~,I.f,212C~.~S~ 
2,*0 (51,54,56,59,60,61,62) [16] C 2 , . [ 1 2 ]  
*aa (48, 50, 52, 53) [17] c~,,If.312s~, c"'-,,,l.f~_31"s~c"~w 

*a'a' (70) 
b2,* (52,55,57,58,61,62) 0 k 0 [18] ('- ~,,1J,21"2 - 2 (.2oSq.2 
*2tb (56, 59) [19] _ 2 .2 .2 
b*b (48.50, 60) [20l c'~,l.f,312S~. ("~., l./, ~12S~C~. 

b'*b' (70) 
c.2~ (62) 0 0 I [21] C~:*[12] 
*c2, (53.57, 60. 61.63, 64) [22] C~.*[ 13] 
cc* (48,49,52.54.56.58.66.68) [231 ('~-*[ 14] ("~*[ 14] 

c'c'* (70) 

turn2 

~23 = m. Then, from Table 3 [19], 

q,,,,,~(OkO, q , )  = 0, 

i.e. the scattered radiation is -n- polarized, 
2 2 2 2 Iclg=,,,(OkO, q t )12=(om)2s-a f  k,.l~31 C,.,C q, 

for the space groups P21/c2 , / c2 /n  (No. 56) and 
P 2 1 / m 2 , / m 2 / n  (No. 59). In both cases the relevant 
symmetry elements are the 2, axis parallel to [010] 
and the n-glide plane perpendicular to [001 ], contain- 
ing a b/2 translation. 

3.4. Symmetry elements and scattering contributions - 
principles in 'polarized structure factors' 

A closer inspection of Table 3 in terms of the or'o" 
and 7r'o" contributions to the total scattering reveals 
the following correlations. 

(i) A 2, axis in the direction of the (axial) scattering 
vector h prohibits a IO,~,,~12 term. This can be easily 
understood by considering that for an odd index, e.g. 
h, O,,,,, involves only the difference of the 2,-related 
scattering-factor tensors, f,~, projected onto [001],7. 
These projections are equal, thus cI9,, must vanish 
via the geometric terms. Consequently, a 2, axis along 
h always produces scattered radiation whose polariz- 
ation is rr if that of the incoming radiation is cr (and 
vice versa). 

(ii) If there is a nonvanishing contribution 10,~,,~t 2, 
it is due to a single or to two mutually orthogonai 
glide planes parallel to h possessing translation com- 
ponents along h. l q,.,,~l = is independent of 6) and it 

must be periodic in rr/2 according to its $2,~, depen- 
dence (see Table 1). 

(iii) For an atom in a general position, there is 
always a 10~,,,12 contribution to the scattering. If a 2, 
axis is parallel to h, this component is periodic in 7r 
and strictly proportional to C~., for all relevant ortho- 
rhombic space groups, whereas the two monoclinic 
cases [1] and [3], i.e. RS- - .2 ,* ,  allow more compli- 
cated patterns. 

(iv) If there is no 2, axis parallel to h in an ortho- 
rhombic space group, O~,,, is periodic in either "rr/2 
(point groups ram2 and mmm)  or 277, the latter 
indicating a space group belonging to one of the cases 
[9], [10], [11] of point ram2. Additionally, l(h,  qt) 
contains a O-independent contribution [see (ii)]. 

Further rules may be extracted, for instance with 
respect to atoms located at special positions, e.g. with 

' ' Here it suffices to emphasize that x, y, z = 0 ,  z or ~. 
the investigation of both the polarization of the scat- 
tered radiation and the ~ pattern of the intensity 
may be useful for obtaining symmetry information in 
difficult cases (e.g. pseudosymmetric structures, phase 
transitions). 

4. FRED and partial-structure information 

In this section, the 18 relevant cases of Table 3 are 
discussed in terms of assessing the 'edge atom's '  co- 
ordinate corresponding to the considered direction 
h. According to Table 3, 'edge-atom' information 
cannot be obtained in the point groups 2 and m 
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Table 4. qtl, ~2 settings of crystal yielding R c and 
R s respectively O, 

P o i n t  

g r o u p  

2 / m  

222 

ram2 

R e d u c e d  

s y m m e t r y  h k ! 

• 2~* 0 k 0 
• c* 0 0 l 

2t2~* h 0 0 
0 k 0  

• .2~ 0 0 I 
2t2t2t h 0 0 
• a2t h 0 0 

• t2* or  *a '*  
b** or b'** 0 k 0 

21a* h 0 0 
2 t*a  

• aa or *a 'a '  

b2t* 0 k 0 
*2tb 

b*b or b'*b'  

c .2  t 0 0 I 
*c2~ 

cc* or c'c'* 

~1 P 1/)'2 P 

O, + ~'/2, 7r 1 
0,1r - 1  

± ~'/2 1 O, 7r 1 
±7r /2  1 O, 7"r 1 
±~ ' / 2  1 O, ~r I 
O, 7r 1 ± ~ ' / 2  1 
0,~- - !  

±7r/2 1 
O,¢r 1 

0, ± ~r/2, ~r, - 1  
± 7r/4, ±3 rr/4 

+7r/2 1 
0,~" 1 

O, ± ~r/2, rr, - 1  
± ~' /4,  ±3 ~ ' /4 

0,~" 1 
±~r/2 1 

O, + zr/2, zr, - 1  
± 7r/4, ±3 n ' /4 

O, 17" - I  
O, rr - 1  

because the W-dependent PSFs O~,,~(h, ~)[2 and 
[O~,~(h, aF)[ 2 do not contain terms Chx, Shx etc. For 
monoclinic systems there is 'edge-atom' information 
only in point group 2/m. 

The method of KPa uses the comparison of t~ae 
intensities of any two 'forbidden' axial reflections of 
the same kind. The intensity values are taken at set- 
tings g'~, suitable to eliminate in the intensity ratio 
the a priori unknown off-diagonal element(s) of the 
scattering-factor tensor (i.e. the anisotropy of the 
resonance). Thus, provided there are significant 
FRED signals, neither the physical origin of the 
anisotropy nor its absolute magnitude need to be 
known. 

By analysing the intensity ratio, one can obtain 
for all cases 

RO c = cos2(2.n.hi, r)/cos2(27rhj • r) 

=(K, , /K , , )T~[ I (h , ,  ~ l ) / l ( h j ,  ~ ) ]  (37) 

and/or 

R s = sin2(27rhi • r)/sin2(27rhj • r) 

=(Kh, /K, , )TP[I(h, ,  g'2)/I(hj, ~F2)], (38) 

where T 0 = tan (gi/tan (gj is a geometric factor and 
incorporates the Lorentz correction. K,,  and K,, are 
scale factors for the two reflections. The exponent p 
is +1 if the 'reduced symmetry" indicates a 21 axis 
parallel to h, otherwise, p = - 1 .  

Table 4 gives values of p, ~1 and ~2 (appearing 
c in the expressions for R 0 and RS). It provides supple- 

mentary information to Table 3 and shows how to 
determine R c and/or  R s for a given space group of 
interest. Under the provision that the (potentially 
h-dependent) scale factors K, are known or that the 

reflection intensities can be put on a common scale, 
i.e. Kh, /Kh,=l ,  the TP-corrected intensity ratios 
R c 0, Rs give indications about allowed ranges of frac- 
tional-coordinate values. This information is still 
ambiguous, but it can be improved to become a 
unique indication of the symmetry-equivalent coor- 
dinates by combining increasing numbers of reflec- 
tions into corresponding R~ and/or R~ quantities. 

In contrast to centric space groups, acentric space 
groups possess freedom from scaling. In point group 
222, the quantities R~ and R s 0 can be obtained simul- 
taneously in the same diffracting position but for 
different ~ settings. Thus, it is possible to eliminate 
the scaling by calculating 

Ro =7- RS/RC=tan2(27rhio • r)/tan2(2rrhj • r) 

= [/(hi,  ~2) / l (hj ,  ~2)]*[ l (hj ,  ~Irl)/I(hi, ~1)]- 

(39) 

For space group P212121, this has been discussed in 
detail by Kirfel & Petcov (KPa),  and experimental 
evidence of the approach was given in a test on a 
crystal of LiHSeO3 (KPb). In the latter paper, it was 
also shown that the coexisting anisotropy of absorp- 
tion may have to be taken into account, which, 
however, is neglected in the present context. 

The remaining cases in point group ram2 present 
a somewhat more complicated situation. There is, 
however, also a combination of ~ settings that offers 
the possibility of eliminating the scale factors Kh. 
Using ~ = ~ ]  or fir2 of Table 4 and ~ 2 = + r r / 4 ,  
±37r/4, one obtains again a quantity R~ that is 
independent of scaling, 

7- tan2(27rhi • r) 
R° = tan2(2rrhj • r) 

_ [ l (h j ,  ~2) sin2(gj-l(hj, ~1)] /(hi, WI) cos2(9; 

[/(hi,  gr2)sin20,-  l(h,, ~1)] l(hj, ~!)cos20j  

(40) 

for cases [10], *a* and [11], b**; one obtains the 
inverse, 1/R~, for [9], *a21. 

Thus, it should be possible to obtain partial-struc- 
ture information in all possible cases by relating selec- 
ted intensity values of different axial reflections of 
the same type. The appropriate gr settings are given 
in Table 4. For all centric space groups, the intensities 
must be scaled together, for the acentric ones, scaling 
is unnecessary according to (39) and (40). 

5. Summary 

The general treatment of kinematic X-ray diffraction 
of totally polarized radiation in the presence of AAS 
allows a clear distinction of geometric and structural 
(physical) aspects. This distinction follows from 
expanding the structure-factor tensor F(h)o, defined 
in the diffractometer system, into a complex linear 
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combination of six real basic tensors Q'uv (u, v =  
x, y, z) that are fixed with respect to the crystal. The 
index surfaces of the Q'v  are surface spherical har- 
monics, i.e. p~ and du~ functions. Thus, the ~-depen-  
dent scattering of the o-- and 7r-polarized components 
of the incident radiation can be treated as scattering 
from those basic scatterers, each giving well defined 
dependencies of the scattering contributions from the 
azimuthal setting ( ~ )  of the crystal and also from 
the scattering angle ( 2 0 )  if polarization parallel to 
the scattering plane is involved. Calculating the real 

T r quantities qu~( r /v ,~ )=enQuo(g t )e , ,  where e , ,  e, 
(71 = tr', rr' and v = o-, ~r) are unit vectors of polariz- 
ation directions, one obtains a basis set of real func- 
tions that fully describe the geometrical aspect of the 
scattering. Since ~3=~ . . . .  q,~ reduce to 0, 1 and 
c o s 2 0  if F(h)oocl  (i.e. the isotropic case), it is 
evident that separating the geometric aspect is 
equivalent to describing an extension of the polariz- 
ation correction of the Thomson scattering model. 
For r /=  v = or, the quv are recognized as the ~-depen-  
dent projections of the tensors Q'~ onto e,~, implying 
that these functions simply probe the respective index 
surfaces perpendicular to the scattering vector h. For 
the other cases, r / #  v, each q,,t,(rlv, ~ )  is the gradient 
vector of the corresponding characteristic tensor 
surface, taken at e~ and projected onto e, .  The 
geometrical basis functions are valid for all crystals 
and the angular dependencies of reflection intensities 
[in particular the periodicities of the l(h,  ~ )  patterns] 
are therefore exclusively determined by the scattering 
geometry. 

The nature of the crystal, i.e. the space group and 
physical content of the asymmetric unit, determines 
the second aspect, which is contained in the complex 
coefficients combining the q,~ to linear combinations 
~,7~(h ' gr). These complex quantities may be termed 
'polarized structure factors'. Thus, any modelling of 
the scattering consists essentially in calculating the 
coefficients according to the structural information 
available. Since they incorporate the energy-depen- 
dent atomic-scattering-factor contributions due to 
AAS, a polarized structure factor @,~(h, gt) is only 
constant for fixed energy. Once the coefficients are 
formulated, the total scattered radiation follows from 
the linear combination of the PSF weighted with the 
amplitudes of the o- and rr components of the incident 
plane wave and the total (polarization-corrected) 
scattered intensity is the complex-conjugated 
product. 

Scattering in the presence of AAS can thus 
be evaluated in a step-by-step procedure that in- 
volves, as the central task, the development of the 
structure-dependent coefficients. With this point of 
view, programming can be carried out with clear 
guidelines. 

Following the developed treatment, a systematic 
investigation of ' forbidden'  axial reflections in mono- 

clinic and orthorhombic space groups was carried 
out. If the problem is confined to purely or-polarized 
primary radiation and one 'edge atom' per asym- 
metric unit, the formulation of the coefficients is 
straightforward by virtue of having only diagonal 
elements in the rotation matrices of the symmetry 
operations. The compilation of the results shows that 
the 45 space groups permitting FRED can be 
classified into 23 'reduced symmetry'  cases according 
to point-group symmetry and characteristic combina- 
tions of symmetry elements with translation com- 
ponents along h. When the axial extinction rules are 
violated, the polarization properties of the scattered 
radiation are characteristic with respect to the pres- 
ence or absence of a 21 axis parallel to h so that 
combined intensity and polarization measurements 
could be employed in difficult symmetry cases, e.g. 
pseudosymmetry, phase transitions. In addition to 
the concise report of axial FRED presenting a useful 
survey for both planning an experiment and evaluat- 
ing results, it is shown in particular how partial- 
structure information, i.e. possible locations of the 
'edge atom', may be obtained from only a few 'forbid- 
den' axial reflections measured at appropriate ~ set- 
tings of the crystal. Attractively, the method depends 
only on the presence of AAS, but no further knowl- 
edge about its origin or magnitude is required. In 
acentric structures, even common scaling of the 
intensity patterns is unnecessary. Owing to the great 
experimental effort and costs required, the method 
may not be routinely applied. Therefore, it will by 
no means become competitive to any established 
structure-solution method, but it is conceivable that 
occasionally it may help to 'get a foot in the door'  
for difficult phasing problems. 
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fully acknowledged. Our special thanks are due to 
Professor Dr K. Fischer, Universit/it des Saarlandes, 
Germany, for many fruitful discussions. 

APPENDIX 

Explicit 'polarized structure factors', PSF, for 
'forbidden' axial reflections 

h O0 reflections (h odd) 

4,~,~( hO0, ~, ) 

= (o/s~){ Ch~ If,2 Y,~ scS:,~ -- 2f,~ Y,3 cC% 

-f23 223 sS2,p ] 

+ i&. [fl~ 2~ ~cS~. - 2f,~ X~ cC% 

-f23 ~_,,23 sS2,v ]}, (A1) 
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q~.,.( hO0, q. ) 

= (o / s 2) { Chx [fl2 E ,2 (scS,-,C2 ~ - s 2 C,.,S~, ) 

+ f,3 2,3 (sCoC~ + cS(.,S2,e ) - f23 223 sSoC2,v ] 

+ iShx [f~2 22 (scSoC2q. - s2CoS . )  

+f,3 ~.3 (sCoCq, + cSoS2q,) 

--f23 E 123 sS(gC2tp. ]}. (A2) 

OkO reflections (k odd) 

• ~,~(OkO, q") 

=(O/S2){Ckyfl3 El3 (sS2tp "-2cC2) 

+ i S k y f ~ 3 2 , 2 3 ( s S 2 ~ . - 2 c C ~ ) } .  (A3) 

4~,, ,(0k0, q,) 

= ( o~ s 2) { Cky[f,2 2,2 Co(s2S* - s cC .  ) 

+fl3 2,3 So(sC2q" +cS2q,)+ f23E23 sCoCg , ] 

+ iSky [f~2 E i Co(s2S,e - scC,e ) 

+f,3 2123 So(sC2~, + cS2,e ) 

+f23 23 sCoCq,]}. (A4) 

OOl reflections ( l odd) 

qb~,,,(00l, ~ )  

= ( o / s  2){ C,~ [f,2 E ,z sSz,v - 2f,3 E ,3 cC~ 

-f23 223 scS2,v ] 

+ iS,z[fl2 Y,2~ sS2 . -  2f13 El cC~ 

-- f23 E2 scS2q. ]}, (A5) 

4,~,~,(OOl, q,) 

= ( o / s % { C , z [ f , 2 E , 2  s S o C 2 .  

+ f ,  3 213 ( - sCoCq,  -4- CSoS2q,) 

--f23 223 (s2CoS~ " + scSoC2~,)] 

+ iS,z [f,2 Y~ 123 sS(.~C2~, 

"4-f13 21 (-sCoCtl, d- cSoS2~ ) 

-f23 E2 (s2CoS,* " + scSoC2,e )]}. (A6) 
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Methods Used in the Structure Determination of Foot-and-Mouth Disease Virus 
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A b s t r a c t  

The structure of  foo t -and-mouth  disease virus 
(FMDV) strain Oi BFS 1860 has been determined to 
2.9 A resolut ion using the molecular - replacement  
method [Acharya,  Fry, Stuart, Fox, Rowlands  & 
Brown (1989). Nature (London),  337,709-716].  Crys- 
tals of  the virus with average dimensions 0.12 x 0.06 x 

* Present address: Department of Biochemistry, 4-West, Univer- 
sity of Bath, Claverton Down, Bath BA2 7AY, England. 

0.12 mm belong to space group I23, a = 345 A with 
1/12 of  the icosahedral  particle per asymmetr ic  unit 
giving fivefold noncrys ta l lographic  redundancy.  
Oscil lat ion diffraction photographs  were collected at 
the SERC Synchrot ron Radiat ion Source at 
Daresbury in accordance with strict disease security 
regulations. The ambiguity in particle or ienta t ion  was 
resolved using a self-rotat ion funct ion and starting 
estimates of  the phases to 8 A were derived from the 
known structures of  two picornaviruses similarly 
oriented in the I23 unit  cell. The phases were refined 
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